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A simple and accurate approach to the design of symmetric profiles which are optima) in the supersonic and hypersonic flow 
with an attached shock is developed. Besides dimensional constraints, the bodies being optimized can satisfy arbitrary isoperimetric 
conditions. The approach which has been developed uses a modification of the “shock-expansion” method (SEM). The modiied 
shock-expansion methcd (MSEM), unlike SEM, does not lead to a physically absurd result, that is, to a finite change in the flow 
parameters when the slope of the contour is solely changed at the leading point of the body. This makes MSEM suitable for 
solving two-dimensional variational problems in gas dynamics, by reducing any of them to a certain extension of the Lagrange 
problem for systems which are described by ordinary differential equations. The possibilities of the approach which has been 
developed are illustrated using examples of profiles which achieve a minimum wave drag coefficient, C,. Profiles designed using 
the MSEM are compared with those obtained using the Newtonian model and linear theory and with wedges while the C, values 
found for them using the above-mentioned approximate models and MSEM are compared with the results of the numerical 
integration of Euler’s eiquations. 6 1998 Elsevier Science Ltd. All rights reserved. 

The number of variational problems in supersonic gas dynamics which have been solved exactly, even 
in the approximation of an ideal (non-viscous and non-heat conducting) gas, is small. These are plane 
and axially symmetric problems which allow transfer to a control contour (CC). In the case of profiles 
from force characteristics which are optimized or specified as isoperimetric conditions, the wave drag, 
lift-to-drag ratio and moment of the pressure forces are expressed in terms of the CC. Only overall 
dimensions constraints allow transfer of the geometric conditions onto the CC. Besides the possibility 
of transferring the conditions of the problem and of the functional being optimized onto the CC, 
smoothness of the required contours is also necessary in order to use the control contour method (CCM). 
Unfortunately, ahnost all optimal contours of bodies with an attached shock wave have internal comer 
points [l]. 

There are two ways of overcoming the above constraints. The first proposes the straightforward 
application of indirect and direct methods of the variational calculus in the approximate equations for 
the flow of an ideal gas, the Navier-Stokes equations, etc. In such an exact formulation, the indirect 
methods, while useful in establishing the structure of the optimal configurations, can hardly become 
the working instrument for solving a wide range of variational problems in gas dynamics. Direct methods 
and, especially, those in which the conjugate problem of the indirect method is used as an “accelerator” 
in searching for the optimum are now demonstrating their possibilities in the design of profiles, wings 
and wing-fuselage combinations which are optimal in transonic flow [2-6]. 

In supersonic gas dynamics direct methods have not been widely used for two reasons. First, repeated 
calculation of the flow around a whole family of non-optimal contours is required in these methods. 
The costs involved in designing optimal plane and axially symmetric bodies in problems which allow 
of transfer to a CC using direct methods are therefore so much greater than when algorithms based 
on the CCM are used [7]. Secondly, these costs are increased even further, if the special features of 
the flows which are being calculated are not taken into account, for example, the calculation of a 
supersonic flow is carried out using “pseudo-establishment” rather than “a march”. On account of this, 
the supersonic contour of a plane asymmetric nozzle of maximum thrust is designed in [8] using 1 h of 
CPU time on a Cray Y-MP supercomputer whereas, using the CCM, the same problem can be solved 
using a PC-AT 486 in less than a minute. 

In more complex variational problems in supersonic gas dynamics, which do not allow of transfer to 
a control contour, it is necessary to precede the analysis of the structure of the optimal configuration 
by using direct methods in which various approximate models play a special role together with indirect 
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methods. In supersonic flows, models of this type [9, lo] give the pressure on the body surface as a 
function of the angle between the normal to this surface and the velocity vector of the free stream. The 
use of such “local” models reduces problems of the design of optimal plane and axially symmetric bodies 
in a supersonic flow, to a Lagrange problem for systems which are governed by ordinary differential 
equations. Local models provide a second method of formulating and solving variational problems in 
just supersonic gas dynamics as there are no such models in the case of subsonic and transonic flows. 
The main drawback of local approaches are the restricted ranges of Mach numbers of the free stream 
M, for which they produce parameters (primarily, the pressure) on the body which are close to the 
exact values. Thus, the errors in the linear theory rapidly increase as A4, and the relative thickness of 
the body z increase. The error in Newton’s formula increases as both A& and T decreases. It does, 
however, remain finite when A4, + 00. 

It is impossible to confirm the reliability of local models without falling outside their limits. This is 
also true when different local models give identical contours. For example, in the problem of the forebody 
of the profile of minimum wave drag using Newton’s formula (when z d 1) and according to the linear 
theory of moderate supersonic velocities, the optimal contour is a straight line (a “wedge”) and this 
applies for any Af, > 1. In the case of the same problem using Euler’s equations, it is true that the 
optimal contour is also close to a straight line [l, 11-151 but, now, only when z < z”, where I!” = ? 
(A&,) is the thickness of the wedge for which the Mach number behind the shock wave is equal to unity. 
If the reflection coefficient of the pressure perturbations from the leading shock wave is equal to zero 
[l, 11-151 and also, when ‘t = 2” [15], a rectilinear contour also gives the solution in the exact formulation. 
Another example of the surprising efficiency of Newton’s formula is that of the optimal cowls of bodies 
of revolution with a neck around which flows occur with an attached shock wave. Here, the cowls found 
using Euler’s equations in all of the examples calculated in [16] are better to within just a few per cent 
with respect to C, than the cowls designed in the Newtonian approximation and, moreover, for different 
values of M,, including M, = 1.5, when the values of C,, found using Newton’s formula, differ several 
fold from the exact values. Up to the present time, there are no other variational problems of the 
aerodynamics of supersonic flows which have been solved in an exact or almost exact formulation (as 
in [15,16]). Apparently, due to this, proper attention has not been given to the efficiency of Newton’s 
method noted above. 

In the light of what has been said, it is difficult to overestimate the role of such approximate models 
which should make it possible to solve with a high accuracy various variational problems of gas dynamics 
without integrating Euler’s equations, etc. Even if they are only applicable to plane configurations in 
a uniform supersonic flow, they enable one to extend the testing of local models which are not restricted 
to such narrow limits. The most natural candidate for such a role is the “shock-expansion” method 
(SEM). Although the first attempt to use this method to design optimal profiles was announced in [17], 
it is unsuitable for this purpose. The point is that, in SEM, the pressure on a profile around which there 
is a flow with an attached shock wave depends on the angles of inclination 6 and 6i of the tangent to 
its contour at the point being considered and at the leading point i, respectively. Henceforth, the 
subscripts i, . . . and 00 are used to indicate parameters at the point i, . . . and in the free stream. In 
variational problems, the dependence of the pressure on the profile on 6i leads to a physically absurd 
result, that is, to a finite change in C, when the inclination of the contour is only changed at its leading 
point. Chapman [17], on realizing the absurdity of this, apparently did not include the term outside the 
integral, which is proportional to the variation in 6i, in the expression for the increase in C, when 
obtaining the necessary optimal@ conditions. Such a way out of the situation can hardly be regarded 
as correct. 

A modified SEM, MSEM, which is free from the above drawback, is proposed below. It 
reduces variational problems of the design of profiles in a supersonic flow with an attached leading 
shock wave to a certain generalized Lagrange problem for system controlled by ordinary differential 
equations. In spite of this, the boundary-value problem of designing the optimal contour which is 
obtained in the MSEM is still quite complicated. A further simplification is achieved by-sub-dividing 
its solution into two stages. In the first of these two stages, the “principal” comer point of the required 
contour is ignored. A comer point is introduced in the second stage using a procedure which is equivalent 
to, but simpler than, that developed in [15] when designing forebodies of profiles with specified overall 
dimensions. 
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1. THE MiDDIFIED SHOCK-EXPANSION METHOD (MSEM) AND THE 
FORMULATION OF THE VARIATIONAL PROBLEM 

The distribution of the parameters on the contour if, around which there is a supersonic flow, depends 
solely on the initial segment iw of the leading shock wave. In turn, the shape of iw is determined by the 
form of the initial segment id of the contour of the body, as shown in Fig. l(a) and (b). In Fig. l(a) the 
segment if is smooth while, in Fig. l(b), there is a comer point at the point d. The contour of the body 
in Fig. 1 is depicted by a heavy line, the shock wave is depicted by a double line and the C+ and C 
characteristics by thin lines. Thex axis of the Cartesian coordinatesx,y is directed along the free stream 
velocity vector V,. The origin of the coordinate system is at the point i. If d is a comer point of the 
contour, parameters on the body to the left and right of this point are labelled with the subscripts “d+” 
and “d”, respectively. 

In the SEM [13, H-201, the angle of inclination cr of the shock wave to the x axis is taken as being 
constant and equal to its inclination at the point i, when determining the parameters on iJ Because of 
this, the flow behind the shock wave is a simple wave with rectilinear C+ characteristics, and any flow 
parameter w on the. body at a point with an inclination 8 of the tangent to the x axis is a function of 6 
and oi 

0 = O(6, Oi) (1.1) 

Of course, the SEW1 enables one to construct a curvilinear shock wave, but its curvilinearity has no effect on the 
distribution of the parameters on if and in ifw. If K,, and KB are the curvatures of the shock wave and the stream 
line behind it, then [IS] K, = WC,, with a coefficient k which depends on the free-stream parameters and the Mach 
number M behind the. shock wave, that is, on its intensity. While remaining positive everywhere, the coefficient k 
increases rapidly and only exceeds unity in a small neighbourhood of M = 1. Hence, as a rule, the curvature of 
the body on id. In fact, in the case of such bodies, the curvature of the streamlines decreases (in modulus) as they 
recede from the body. For example, in Fig. l(b) for finite lu, in the neighbourhood of the point w, lu, = -00 at the 
corner point itself. In the case of concave generatrices, the increases in K+ with distance from the body can be 
compensated by the smallness of the coefficient k. However, in the case of these bodies as well, if this doesn’t reach 
“gradient catastrophes” with the formation of intense secondary shock waves, the angle of inclination of the shock 
wave iw will only vary strongly when 6 changes strongly on id. In direct problems, bodies around which a flow occurs 
are not characterized by such a “pathology”. The SEM therefore produces quite accurate results for these bodies. 

In the case of contours which are obtained in variational problems, by virtue of the dependence in 
(1.1) of the parameters on the body surface on oi, it follows from the necessary conditions for optimal@ 
that 6i 2: 6(O) when 6(x) is continuous forx > 0. In spite of this, in the SEM, oi is determined using 
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@ rather than using 6(O), although, in the case of such bodies, the value of the angle of inclination of 
the tangent at the unique point on the body surface does not bear any relation to the slope of the leading 
shock wave. This flaw in the SEM can be easily eliminated by taking, instead of oi, the mean angle of 
inclination of the shock wave on iw or the ratio C = x,,,/y,,, associated with it, that is, by using the formula 

instead of (1.1). 

w = w(6, C) (1.2) 

Unlike the case of Oi, the shape of the whole of the initial segment of the body id is affected by the 
parameter X which occurs in (1.2) and, when there is a convex comer point at point d, the part cdw of 
the fan of rarefaction waves which arises in the flow. This effect manifests itself in the following way. 
As in the SEM, a simple wave with constant parameters on each C+-characteristics is realized in ifi. 
On account of this, all the flow parameters, in particular, 6 and the pressurep, are known at the point 
x = 5 and y = TJ of intersection of the C+-characteristics with the shock wave. The local inclination 
of the shock wave can be found for any of them. Although the emerging arbitrariness can be used to 
increase the accuracy of the construction of the front shock wave (this,was done within the framework 
of the SEM in [18]) we shall subsequently find its inclination using 6. As a result, when account is 
taken of the rectilinear@ of the C+-characteristics and the differential equation of the shock wave, we 
obtain 

L,, ~r-x+c~(9,~)())-~)=0, LJ,, =C’-a1(6)lj’=0 

~~(6, Z) = ctg (6 + a), a,(6) = ctgo 
(1.3) 

Here, derivative with respect to the ordinate y of the body are denoted by primes, a is the Mach 
angle, the dependences of cl and aI on their arguments are known from the formulae of the simple 
wave which is realized behind the oblique shock wave with xWJY,,, = Z, and y, x and 6 are the values of 
the corresponding variables at the point of the contour belonging to the same C+-characteristic as the 
point of the shock wave iw which is being considered and, subsequently, of the C-characteristic W$ 
When the point d is a corner point, part of the fan may be incident on the shock wave. Then, instead 
of (1.3) 

4, ‘r-Xd+C*(~,~‘)(Yd-~1)=0, LQ “&2,(6)lj=O (1.4) 

in its section cw with the same cl and al as in (1.3) but with the replacement in ,& of differentiation 
with respect toy by differentiation with respect to 6, which labels the C+-characteristics of the fan. 

If < and TJ are the abscissa and ordinate of the point of the C--characteristics wf then, by analogy 
with (1.4), its initial and final segments we and efare determined by the equations 

4, ~r-xd+c,(9,z)(y~-~)=o, 4, =&-u*(l9,Z)iJ=O 

4, =~-x+c*(s,c)(y-TJ)=o, f& =<‘-a,(6,C)ly=O 

a2(6, E) = ctg (G - a) 

Finally, the tangency condition 

Lsx’-ctg6=0 

(1.5) 

(l-6) 
is satisfied on the contour of the body Lffi 

If the contour of the body is specified, the flow around this body is calculated iteratively with the values of Z 
found from the preceding approximation. As in the SEM, in the first iteration, C = ctg oi. At each iteration, the 
parameters for the equivalent oblique shock wave, in particular, the pressure P = p(Z), the angle of inclination of 
the flow 8 = 6(Z) and the specific entropy S = s(Z) are determined from the exact relations on the shock wave. 
After this, the equations defining all the flow parameters as functions of 6 and Z are written in the form 

-p, 2h(p,S)+VZ=2H, A=pV2tga 
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Here, h and p are the specific enthalpy and the density, which are known functions ofp and S, Vis the modulus 
of the velocity and H .is the total enthalpy. By virtue of (1.7) 

K(M) = 4+2(x -2)M* -(x -1)M4 

xMQ4* -1 

Here, A is the reflection coefficient of pressure perturbations from an equivalent shock wave, A(Z) and ‘P are 
the values of A from (1.7) and the entropy function Y = pp-'" for it, primes denote differentiation with respect 
to Z and the formula forpz is written for a perfect gas with an adiabatic exponent x. 

The formulae and Eqs (1.3)-(1.8), after I: has been replaced by oi = a(aJ, enable one to construct 
the curvilinear shock wave iw and the C-characteristic wf in the SEM approximation. In spite of this, 
the SEM and MSEM are fundamentally different. In the SEM, the shape of the shock wave iw and the 
characteristic wf have no effect on the distribution of the parameters in ifi and on the contour $ In 
the MSEM, the flow in ifi depends on the ratio Z = x,,,/y,,, = &/q,,,, which is found when calculating 
the flow and, moreover, with a different effect of the initial segment (id) and the final segment (Qj of 
the contour on Z. Because of this, in the MSEM, as with Euler’s equations, the optimal contour at the 
point d in the general case will have a corner point. To be sure, in MSEM, due to the replacement of 
a curvilinear shock ‘wave with a low-shock wave with the mean inclination, it will be unique (at least, 
in cases when the contour at the comer point is convex) while, within the framework of Euler’s equations, 
the optimal contour has an infinite number of comer points and points of their condensation [l]. This 
difference, however, is unimportant, since, in the second case, there is no point in taking account of 
comer points which differ from the large (“principal”) corner point [l, 14, 15l.t Hence, the MSEM, 
while not suffering l?om the flaw which has been noted above in the case of the SEM, predicts such a 
fine singularity of the optimal contours as the presence in them of an internal comer point. 

It has been shown in [lo, 171 that a constraint on the length 1, which we shall take as the linear scale, 
plays an important role in variational problems of design of optimal closed bodies. On account of this 
constraint, the required contour can have segments of a boundary extremum with respect to x in the 
form of a front face (X = 0) or a rear end face (x = 1) and even both faces at the same time. The flow 
around a front face occurs with a detached shock wave and is therefore not considered here. When 
there is a rear end face f”f (Fig. lc), the pressure p+ acting on it is assumed to be known and is 
independent of the shape of the contour if”, around which there is a supersonic flow, and y. In the case 
of a body which is symmetric about the x axis, the wave drag coefficient C, is equal to 

c, = ‘i p(l9, X;)dy - y,op+ 
yi=O 

C, 
Here,p andp+ have been divided by p,V? while y, likex, has been divided by the length of the body; 
and subsequently all other integral characteristics are determined for its upper half. 

Together with the specification of the length, the body being designed can satisfy N isoperimetric 
conditions which we shall take to be 

F” = yfQn(p,6,~,y)dy- yfcp”(p+,x,y)dy, n=l,..., N 
yi=O y,=o 

Here, F” are known constants, and Q” and (p” are known functions of their arguments; as in the 
expression for C,, the second integrals reflect the contribution from a possible rear end face f”’ and, 
in formulating them until the necessary optimality conditions have been obtained, we should not replace 
x by unity and yp by zero. 

tAcmrding to [15], for A > 0, when the angle between the tangents at the corner points is particularly small, there can be 
two corner points with angles similar in value. 
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2. THE NECESSARY CONDITIONS FOR OPTIMALITY 

The isoperimetric conditions are included in the variational problem using a vector of constant 
Lagrange multipliers p with components pi, . . . , pN. As a result, in the design of a body which, let us 
suppose, provides a minimum value of C,, the latter is replaced by 

cp(p+,x,y,p)= p+ + LWPCJ~Y) 
n=l 

For any permissible variation, the variations in C, and x are identical. We next put together the 
Lagrange functional J. For this purpose we add to x the integrals with respect toy along the contours 
id_ and d+f and the integrals with respect to 6 in the fan of rarefaction waves (only such comer 
points are subsequently considered) from the left-hand sides of the equations & = 0 from (1.3)-(1.5) 
multiplied by variable Lagrange multipliers b(y) or h(8) and, also, from the left-hand side of 
the tangency condition (1.6) multiplied by the variable multiplier ho(y). For any permissible variation 
SC, = 6J. 

What has been said also holds without change when if forms not an isolated body but its forebody 
(Fig. Id) with a specified length xf = 1 and ordinate of the terminal point yf In this case, the above 
expression for C,, withy” replaced byf, differs from the wave drag coefficient by a constant (p’ -p,)yfi 
which is unimportant when determining the optimal contour. 

On varying the contours if shown in Fig. l(a)-(d), we arrive at the expression 

SC1 = X”h + Y”Ayd +[h,z(~)-h,,(~)~d_(~r-~,~r))c=d_ + 

+H”Arl, + H=AE+ ’ f (A%x+A*66+A%~+A’-%q)dy+ 
y;.=o 

?f 
+ j (Dx8x+D’%9+Dr6~+D”~q)dy- ‘fA+&dy 

Yd Y,=o 
(2.1) 

On the right-hand side of (2.1) the coefficients at the increments &d, Ayd, etc. and at the variations in the 
integrands are functions of the coordinates of the contour x and y, of the shock wave iw - 5 and 9 and of the 
characteristic wfor wf” - c and 9, of the angle 6 and other parameters on the contour of the body and at the corner 
point, if there is one, on the pressure,p+ and on the quantity Z = &,,/Q,, as well as constants and the variable Lagrange 
multipliers. In the case of the forebody when np = _xr = 1 and yp = yf are specified, (2.1) do not contain the last 
integral and the terms with Arf and Ay,=. The subscripts f” and f are identical for a forebody and for bodies without 
a rear end face. If the point d IS not a comer point, the first four terms and the integrals with respect to 6 disappear 
from the right-hand side of (2.1). 

In the variation of any (not necessarily) contour shown in Fig. l(a)-(d) we make the coefficients & 
at firl and SC in (2.1) equal to zero due to an arbitrary choice of the multipliers. This leads to the system 
of equations 

~,*‘(Y)=~,,(Y), h,,(y)= 
A,, (Y)4 

ctg(b + a) - ctg d ’ Y EKAYJI 



The design of flow profiles for arbitrary isoperimetric conditions 907 

uv=h@)r h,,(6)= %2ew, 
ctg(b+a)-ctgo’ 

6 6[9&,29,1 

(2.2) 

uv = h,(6), h,,(19)= 
A,, (fm, 

ctg(6 + a) - ctg(6 -a) ’ 29 E [fiwfifd+l 

h*‘(y) = h(Y)* hZ,(Y) = A22 (YM 
ctg( 6 + a) - ctg(6 - 01) ’ 

YE [Y&Yf”l 

The differential equations, defining XI2 and &J in the four ranges of variation ofy and 3, allow four 
conditions. We obtain two of these by equating the coefficients which depend on XI2 and &Q in the third 
and fourth terms of (2.1) to zero, that is, by putting 

h,,(Y,) = &,(~d-), h22(Yf/) = h,,(ff,+) 

The derivatives of aI and a2 with respect to 6 differ. Hence, hII f h11(4d-) and &rcyd) # &!I(%+) 
by virtue of (2.3) and (2.2). We obtain the two further conditions which are necessary for determining &k 
by putting IP = Hz = 0 in (2.1). This gives 

[&Q2 - &a, + (A,, - ~22mv = 0 

i22p 
rlw@,, -h,,),+Ir.(ll-y)c,,dh,,+ jol-Y)w%+ 

h2i 122, 

+)fAz2u&q=&' 'j&&Y 
%v ?;=O 

(2.4) 

Here, as previously,f” =ffor forebodies and for bodies without a rear end face. The relation between 
n and y or 6 is established from a calculation of the flow about the contour if” within the framework 
of the MSEM, and the relation between y or 8 and hr2 or & is established from the solution of the 
conjugate problem fix the multipliers & which, together with the equations for these multipliers from 
(2.2), includes conditions (2.3) and (2.4). All the equations and conditions of this conjugate problem 
are linear in the multipliers & and, apart from the last condition in (2.4), they are homogeneous. The 
last condition in (2.4:) becomes homogeneous if the free-stream parameters and the form of the contour 
if” are such that E = 0. When E = 0, the solution of the problem for b, which is important later, is 
trivial, i.e. 

After choosing I&, the variations of 6 in if” enter into expression (2.1) together with the increments 
of the coordinates of the points d and f”. We employ the arbitrariness in the as yet undetermined 
multiplier &, in order to make the coefficients at 58 vanish. As a result, I_s is defined by the finite 
equations 

a*= g (  “*z(g), ( 1 6J = P,U,,U2,Cl 
P.X,Y z 

(2.6) 

After this, only terms which are proportional to the increments AQ, Ayd, Axp and Ay,= and integrals 
of & in id, df” andf”fremain. When there are N isoperimetric conditions, these increments and variations 
are not independent. Their independence is achieved by the introduction of N compensating points k,, 
and the determination of the constant Lagrange multipliers pl, . . . , pN from the linear system which 
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is obtained if one puts 
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A” ~0, --A; -A,, =O, Dx =@, -h;, -h,, =0 (2.7) 

at the points k,, in id and df”, respectively. 
Satisfying these equalities for the present only at the points k,, enables one, while varying x in 

the neighbourhood of any point of the contour if at the expense of a simultaneous variation of x in the 
neighbourhoods of k,,, to preserve the value of all N functionals which have been specified as iso- 
perimetric conditions. Since, on account of the choice of p, variation of x in the neighbourhoods of the 
points k,, in no way manifests itself in the expression for SC,, the & in rif, df” andf”f can now be considered 
as being independent. Consequently, if the contour idf’ provides a minimum of C, then the first (second) 
equality of (2.7) must be satisfied over the whole of the interval id(df’). 

Similarly, if a corner point ensures a minimum of C,, then the necessary conditions of optimality, 
which determine its magnitude and the position of the C+-characteristic dw in the fan of rarefaction 
waves, take the form 

x” = h,, - hod+ + A,*&& -& + & - &d+ = 0 

AI W &ll+ 
(2.8) 

Y” = (0_ - 0, + ?L,+x: - h()_Xl)d + f Cl42 + I Cl&2 = 0 

hzll- hw 

In the case of the two-dimensional forebodies, the equations and conditions of the conjugate problem 
(2.2)-(2.4) and (2.6) for b and & and the optimality conditions (2.7) and (2.8), at least in principle, 
enable one to design contours which, by satisfying the N isoperimetric conditions, ensure a minimum 
value of C, in the case of supersonic flow around the body with an attached shock wave. In the case of 
closed bodies of specified length, the optimal@ conditions at the point$, which is coincident or is not 
coincident with f, are obtained in the same way as in [lo] and reduce to the inequalities 

Yf” =(a-cp-h,ctgti-h a ) 1.2 , f” 3 0, Xf” s I,,. + h12f” s 0 (2.9) 

The violation of the first inequality of (2.9) at the pointy” = f of a body without an end face is indicative 
of the need for its introduction. Here, the optimal size of an end face is determined by the same condition 
with the equality sign. All the values in it (apart from cp) are the limiting values on approachingf” from 
the left. In the case of a body without an end face, satisfaction of the second inequality of (2.9) indicates 
that C, increases as the body length is reduced. For bodies with an end face, the same inequality is 
the condition that the end facef”f is a segment of a boundary extremum. As in [lo], the one further 
condition that the end face is a segment of a boundary extremum with respect to x takes the form 
A+ = cp,(p+, LY, P> 2 0. 

3. TWO-STAGE DESIGN OF THE OPTIMAL CONTOUR 

The equations and optimality conditions derived using the MSEM, being incomparably simpler than 
those to which Euler’s equations would lead in similar variational problems, are, nevertheless, still quite 
complicated. At the same time, experience acquired during the investigation described in [15] suggests 
that the design of configurations which are close to optimal can be simplified considerably in practice 
without any loss of quality. This possibility is opened up due to the smallness of a, on the right-hand 
side of the second condition from (2.4), and this smallness of E is a consequence of the smallness of 
the derivativepr from (1.8). Taking account of this, we can subdivide the design of the optimal contour 
into two stages. In the first stage, we put E = 0 which, as will be shown below, gives a contour without 
a corner point. In the second stage, a corner point is introduced into the simplified version of the 
approach developed in [15], taking account of the special features, established in [15], of the orientation 
of the fan of rarefaction waves which arises in a flow around a comer point. 

In the first stage, putting E = 0, we arrive at equalities (2.5) and, then, at a substantial simplification 
of all the optimal&y conditions. In the first place, instead of the different equations (2.6) which determine 
X,&J) in id and df” and the different optimality conditions from (2.7), now, everywhere on if” 

ho = -(a4 +Qppd)sin2 6, Qx -h;, = 0 (3.1) 
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mermore, it follows from (2.5) and the first condition of (2.8) that the multiplier b is ~dhu0~ 
at the point d and, at the same point, the second condition of (2.8) gives 

ad_ -Qr++h,,(X:-xxL)d =o (3.2) 

The first equation from (3.1) holds, in particular, to the left and to the right of point d, while the 
multiplier &, is continuous at this point. The right-hand side of this equation is therefore also continuous 
at d. It follows from this and from (3.2) that the generatrix if, which corresponds to E = 0, is smooth. 
Here, the conditions de ermining the contour of a closed body without a rear end face (the forebody) 

‘t, and the segments of the ontour ir and yp of a body with a rear end face as well as the conditions for 
a closed body at the Ipoint f”, which coincides or does not coincide with the point f, do not differ in 
form from those obtained in [lo] in the case of local models. The difference lies in the fact that, in [lo], 
all the parameters are functions only of 6, and pa = dp/d%. Here, however, all the parameters are 
functions of % and Z, while pa = @p/i%), = A with A@, Z) from (1.8) and with X, which depend on 
the shape of iY. The smooth contour ifor its segment ip is now determined iteratively. At each iteration, 
the contour with a rear end face or without it is designed in the same way as in [lo], and Z = x,,&,,, is 
taken from the precedling iteration. The shock wave and the C-characteristics are constructed and that 
characteristic which arrives at the point f orf” is found. This characteristic determines the coordinates 
of the point w and, using it, C = x,,,/yw for the new iteration. 

In the second stage a comer point is introduced into the smooth contour which has been designed. 
It is not introduced within the framework of the conjugate problem for & and E # 0. We shall therefore 
refer to the contour which has been designed as “quasi-optimal” in the MSEM approximation. In the 
same sense, the contour with a comer point from [15] are “quasi-optimal” (within the context of Euler’s 
equations). 

The points c and w are coincident in the case of the “quasi-optimal” contours of forebodies designed 
in [15]. In [15], configurations with a fan of rarefaction waves at the point d correspond to A < 0. When 
A < 0, the rarefaction waves are reflected from the shock wave as compression waves. It is clear that, 
in the case of a forebody with %f > 0, the incidence of compression waves on the end segment of the 
contour would increase C,. The flow therefore occurs around the quasi-optimal contours from [15] as 
shown in Fig. l(e), giving almost the whole of the reduction in C, compared with a contour without a 
comer point. 

In the problems being considered, 6 and % can be of any sign. In accordance with this, the fan is 
orientated as shown in Fig. l(e)-(g). ff 6 > bat the terminal point of a segment of a contour in a 
supersonic flow, then the fan is orientated as shown in Fig. l(e). If 6 c 0 in a sufficiently large neigh- 
bourhood of the same point, then, on the other hand, it is favourable, when A < 0, that it should be 
reflected from the front shock wave as a whole (Fig. If). The “quasi-optimal” decomposition of the fan 
in the case of small negative 6 at the terminal point, when the angle 6 close to its now becomes positive, 
is carried out according to the scheme in Fig. l(g) in which %,, = 0. We call the schemes of Fig. l(f)-(g) 
‘Yestable” schemes (TC). In order to select the optimal scheme from the TC with the same accuracy 
as in [15], we proceed. as follows. 

Suppose that a smooth contour is designed which satisfies all the equations and conditions of the 
problem and suppose ,that %i is the angle of inclination of the tangent at its leading point. We now specity 
two positive increments of this angle Ail and A%iz and, using the same equations and conditions, we 
design a further two contours if or ip” in the class of TC but now with a comer point at point d. We 
ensure that the isoperimetric conditions are satisfied in the case of these contours by the choice of cr. 

After the C, values of the two non-smooth contours from the class of TC have been determined with 
the same accuracy as in [15], in addition to the C, = C, of the smooth contour, we Iind the coefficients 
bl and bz of the quadratic dependence AC’ = C, - C, on A%i 

AC, = b, (1 + b*A%i)A%i (3.3) 

By virtue of this, when blbz > 0 for the quantity A%i’” which gives a minimum of C, and the AC,” 
corresponding to it, we have 

A19; =--$ 
2 

AC; =-$$<O 
2 

(3-4) 

Having described the method of dealing quasi-optimal two-dimensional bodies, we rxw caution the 
reader against overestimating the advantages of the MSEM. In particular, in the case of the body shown 
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in Fig. l(h) around which there is hypersonic flow, the SEM produces a more correct value for C, than 
the MSEM since, for such a body, the segment id in which the SEM determinesp exactly while the 
MSEM determines it inexactly provides the main contribution to C,. On the other hand, for the same 
reason, in the case of a specified area of the longitudinal cross-section, for example, the quasi-optimal 
body, as in [lo], has a massive afterbody and rear end face which reduce 4 andp on the surface around 
which the flow occurs. In the case of such bodies, when determining C,, it is important to calculatep 
sufficiently accurately over a large part of the contour if” which the MSEM also gives. Of course, in 
variational problems, the principal advantage of the MSEM lies in eliminating the singular effect on 
C, of the angle of inclination of the tangent at the unique point i which is inherent in the SEM. The 
non-physical inverse effect of the shape of the segment df” on the shock wave or, more accurately, on 
the position of the point w on the shock wave and, consequently, also on the quantity C could also be 
added to the drawbacks of the MSEM. In the complete system of equations and conditions of the 
conjugate problem and the optimal@ conditions of Section 2, this effect manifests itself through 
the multipliers &which appear, for example, in conditions (2.9). However, in the two-stage design of 
the quasi-optimal contour, this inadequacy satisfactorily disappears. In particular, because of this, the 
conditions at the pointy” orfbecome local and exact, agreeing with those obtained using “local variation” 
[l] in the approximation of Euler’s equations. 

4. EXAMPLES OF THE DESIGN OF OPTIMAL PROFILES 

As an example we will consider closed bodies which give a minimum value of C, in the case of a 
specified length and longitudinal cross-section area 

F= ‘f (I-x)dy- 
y;=o 

,y$ - XWY 

In this case, when there is a single constant Lagrange multiplier p., we have 

<r,=p(&Z)+p.(l-X), cp=p++p(l-x) 

The equations and conditions which, in this problem, determine the smooth extremal contour if” in 
the first stage and the segments id and Q!! of the quasi-optimal extremal contour in the second stage, 
are identical to those obtained in the case of a local model using a simple wave formula [lo]. For a 
perfect gas, these extrema are obtained by integrating the ordinary differential equation 

(4.1) 

in which, by virtue of the necessary conditions for a minimum value of C, [lo], 

At the terminal point f” + for f” = f of closed bodies, the conditions 

(p-p++pV2tgcrsin6cos6),.~0, sin26,.L0 (4.3) 

must be satisfied. 
For a body with a rear end face, the first of these conditions (with an equality sign) determines ye 

while the second condition, together with the first inequality of (4.2), are the conditions for the rear 
end face to be a segment of a boundary extremum. The difference between the equations and conditions 
(4.1X4.3) and the equations and conditions from [lo], which are superficially identical to them, lies 
in the fact that, in (4.1X4.3), all the parameters are functions of 6 and C and not just of 6, as in [lo]. 

By virtue of (4.1) and (4.2) the curvature of the optimal contour of closed bodies, as in the local 
models from [lo], is of fixed sign (it is equal to zero in the limit case when u = 0). In the case of optimal 
bodies without a rear end face it follows from this that, when F > 0, they are convex since, when j > 
0, a contour lying above thex axis cannot join the points i andf, which belong to this axis. Incidentally, 
it can be seen from this that negative values of u correspond to such bodies. The fact thatj has a fixed 
sign is insufficient for the convexity of optimal bodies with a rear end face. In fact, it is possible to join 
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Table 1 
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P+ 0 PO. 2p, 
- 

Ma 6 12 6 ‘2 18 6 12 18 
-- 

CZX Id 1.189 0.785 0.892 0.708 0.663 0.579 0.639 0.638 

AC,, % 
AC,, % 
AC,,, % 
AC,,, 76 
AC,,, % 

TX 103 

YpX l@ 
.Qx ld 

:r;:: 

-kY,j x 104 

t+xld 

0.09 

5.25 8.35 
29.7 30.3 
149 223 

148 157 
145 156 

211 266 

513 614 

253 239 

90 170 

-110 -67 

0.33 0.11 0.43 0.58 
051 0.13 0.13 
2.92 5.65 6.93 
30.1 31.8 31.7 
233 258 270 

154 158 159 
154 158 159 
217 270 290 

513 616 653 

245 236 232 

97 158 170 

-2 -9 -16 

0.16 
1.44 
0.62 
34.6 
412 

161 
161 

222 
511 

238 

92 

47 

0.48 0.69 
0.18 0.13 
3.13 4.71 
32.3 32.3 
303 290 

160 161 
160 161 

275 292 

618 654 

234 232 
150 164 

19 43 

the point i to the pointy at whichxp = 1 and yp > 0 with both a convex contour and a concave contour. 
Here, the first inequality of (4.2) plays the decisive role. The contour of an optimal forebody can be 
convex, concave or a straight line segment, depending on the magnitudes of yf and F. 

We will now compare the quasi-optimal contours which are obtained in this problem using the MSEM 
with the optimal contours which were designed with the same constraints in [lo] using the linear theory 
of two-dimensional supersonic flow and Newton’s model. 

Typical values of Ck for bodies of minimum drag, designed using the different models, are shown in 
Table 1. In this table, results obtained for bodies with F = (tg30”)/6 = l/(643) = 0.096 around which 
there is a flow of a perfect gas with x = 1.4 whenp+ = 0, p_ and 2pm are collected together. Since F 
of the upper half of lthe body is relative to the square of the length, the selected value corresponds to 
rather thick bodies. So, in the case of a body which is symmetric with respect ton = l/2 and has a parabolic 
contour, Bj = 30”, $r= -3O”, and the maximum relative thickness zo = y(1/2) = 0.144. In the case of 
bodies with a rear end face, the cross-section of maximum thickness is placed at values of x which are 
either equal or close to unity and the corresponding value of z is close to r,,. Regardless of which model 
was used for the design, the values of C, presented in Table 1 were found using the MSEM. 

The third row in Table 1 gives C,, the wave drag coefficient of a quasi-optimal body with a comer 
point, the contour of which was designed using the second stage of the MSEM. The differences (as a 
percentage) from this value of the values of C,, for bodies with a rear end face designed using the first 
stage of the MSEM (AC,), in the approximation of Newton’s model (AC,) and of linear theory (AC,), 
of a wedge of the s%me longitudinal area (AC,,) and, also, of a pseudo-optimal body without a rear 
end face (AC,) designed in the linear approximation [21], are shown in the following rows. For the 
reason explained in [:LO], optimal Newtonian bodies have only been designed forp+ 3 p_. For all bodies 
C, > c. Nevertheless, ACfl turned out to be extremely small for all of the examples which were 
calculated. While the smallness of AC, is quite natural since, here, as in [15], the corner-point angles 
are small, the smallness of AC,, is surprising, particularly in view of the fact that Cfl c C, in a number 
of cases. The same is also observed in the case of smaller M,. The quantities AC, are also small. In 
the case of wedges with a rear end face AC,, = 30%, while AC,, for pseudo-optimal bodies without a 
rear end face is hundreds of percent. 

Several geometrical characteristics of quasi-optimal bodies with a comer point have been collected 
together in the lower part of Table 1, which correspond to the upper part of the same table. These 
characteristics are thleir relative thickness 2, the coordinatesXd,yd andyf”, the angles aj and 3~ and the 
comer-point angle Ad), = 
models, are shown in 

ad+ - 13~ Smooth contours, designed for K, = 3,6, and 12 using the different 
Fig. 2 forp = pm. We have plotted TJ = y/r0 along the ordinate. Contours with 

a rear end face, designed in the MSEM approximation, using linear theory and Newton’s model are 
given by the solid, dashed and dash-dot curves, respectively. The small circles on the solid curves give 
the positions of the c.omer points. In addition, a wedge and a symmetric profile with the same area F 
are shown by the solid lines in the upper part of Fig. 2, corresponding to M, = 3. 
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M,=lZ 

Fig. 2. 

The data in Fig. 3 and Ihble 2 enable one to estimate the effect of the magnitude ofp+ used in the 
design on the choice of the contours. The smooth contours, designed using the first stage of the MSEM 
forM_ = 6 and three values ofp+/p,, which are indicated near the cutves, are shown in Fig. 3, while 
the values of C, and their differences SC, from the corresponding optimal values are given in Tmble 2. 
This table also shows the p& for which the optimal contours were designed and those values of p+ at 
which the values of C, were subsequently calculated. By virtue of this, the values of C, along the 
second-fourth columns are the optimal C’ and the differences from these values determine SC, in the 
remaining columns of the table. The error in speciQing~&, byp, increases C’ by not more than 1%. 

Figure 4 explains the procedure for the design of quasr-optimal bodies. In this figure, the results of 
the calculation of AC, = Cf - Ci where C,C and Ct are the values of C, for the initial (smooth) body 
and the body with a comer point at the point d, respectively, as a function of A%, determined in an 
analogous manner, are shown by the small circles. The solid curve is the parabola (3.3) with the 
coefficients bi and bz calculated using the values of AC, and A%i at the third and &VI points. The closeness 
of the solid curve to the small circles guarantees the high accuracy of the determination of A%im and 
Amusing formulae (3.4). _ . 

%ble 2 

0 1.19 120 1.22 0 0.9 2.9 
PC-3 0.90 0.89 0.90 0.9 0 0.9 
% 0.61 0.59 0.58 5.3 0.9 0 
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0.5 X 

Fig. 3. 

-AC,” 10’ 

Fig. 4. 

Tables 3 and 4 give an idea of the accuracy of the MSEM and other models, in finding C,, rather 
than in the design of the optimal contours. ‘lhble 3 corresponds top+ = p_ when the errors in determining 
p on the contour if” are directly reflected in the calculation of C,. The values of C, calculated by different 
methods are presented in this table for various h4,. Here, Ctiz, CL, and C&z are the values of C, 
calculated using the MSEM, of smooth bodies designed in the MSEM approximation, calculated using 
linear theory and using Newton’s formula. The values of C,, calculated by integrating Euler’s equations 
using a monotonic second-order marching shock fitting scheme with extrapolation to a zero step size 
following Richardson, are presented in the third row for smooth bodies designed using the MSEM. A 
comparison of the second and third rows demonstrates the exceptionally high accuracy of the MSEM. 
On the other hand, a comparison of the fourth and fifth rows and, also, of the sixth and seventh rows 
with CL and C,, determined using the formulae of linear theory and using Newton’s formula, 
demonstrates the quite acceptable accuracy of the latter. Their efficiency in the design of optimal bodies 
is quite surprising. 

A comparison of the values of C, of a pseudo-optimal symmetric body without a rear end face, 
determined using the MSEM (C& and using linear theory (Cd), with the values calculated by 
integrating Euler’s equations (the third row’of Table 4) shows some increase in the errors of the MSEM 
when, as before, the errors in linear theory are completely acceptable. However, for smaller F, for which 
bodies without a rear end face become optimal, the accuracy of the MSEM is found to be as high as 
in Table 3. Hence, when used for its direct purpose, that is, for solving problems of optimal design, the 
MSEM always ensures more than sufficient accuracy. 

The modified “shock-expansion” method (MSEM) proposed in this paper enables one to solve 
problems of the optimal design of spiky two-dimensional bodies in a supersonic or hypersonic flow with 
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Table 3 

K 3 6 12 

C&c x IO3 13,287 8,932 7,114 
c, x 103 13,827 8,928 7$98 
C x JO3 xr_qr 13,981 9,183 7,481 
c,,, x 103 9,819 4,694 2,322 
C,,,X l@ 14,012 8,967 7.093 
c,x rd 5,345 5,345 5,345 

Bible 4 

M, 3 6 12 

c,, x ld 44,781 29,666 25,367 
c,x ld 44,935 29,476 23,716 
c,, x 10s 39,280 18,779 9,291 

attached shock waves, rapidly and with high accuracy. It enables arbitrary isoperimetric conditions to 
be included in the variational problem and, in the approximation of the integral theory of a boundary 
layer, enables one to take account of friction and heat fluxes. With an accuracy in determining C, of 
optimal bodies which is close to the accuracy of the numerical integration of Euler’s equations, the 
MSEM reduces the problem of design of the optimal contour to a Lagrange problem for systems 
governed by ordinary differential equations. Despite this considerable simplification, the MSEM, unlike 
the local models as well as the extremely tedious solution using Euler’s equations, gives the principal 
comer point of the optimal contour. Its occurrence is due to the fact that the reflection coefficient A 
of the pressure perturbations arriving from the body onto the front shock wave, is non-zero. The 
smallness of A enabled us to simplify the solution still further by subdividing the design of the quasi- 
optimal contours into two stages. A contour without a comer point is designed in the first stage and a 
comer point is introduced in the second stage using a simple procedure based on the distinctive features 
of optimal forebodies of specified overall dimensions found in [15]. 

The rapid and extremely accurate solution of fairly general, though two-dimensional, variational 
problems in supersonic gas dynamics using the MSEM has enabled us to estimate the possibilities of 
simpler approximation approaches based on Newton’s formula and linear theory as applied to the same 
problems of optimal design. Comparisons have revealed the surprising efficiency, above all, of Newton’s 
formula, and of linear theory to a somewhat lesser extent, in designing optimal contours, rather than 
in calculating their C,. 
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